Appian Records give you the power to access all of your enterprise data in a single location, regardless of where your data lives.
With a single point of management, you can easily build interfaces, reports, and other interactive elements that put important business data at your users' fingertips. But how do you know which data you need to build a useful app?
Data modeling can help you confirm the business needs your application will serve because you will need to collect information from stakeholders to build your data model. We recommend investing time in comprehensive data design before you start building other aspects of your application (such as the interfaces users will interact with).
This page explains how to model data using the latest Appian Records features, some of which require that you enable data sync on your record types. To see the biggest benefits of working with your data in Appian, it is recommended that you enable data sync for your new record types to accelerate your application design. Your application can use any combination of record types regardless of whether they have data sync enabled.
There are several advantages to data modeling that will make your eventual development process simpler. Here are a few reasons why building a data model is a recommended way to start the app-building process.
First, the model should be used as a communication tool with business stakeholders to confirm your understanding of the application’s data requirements. By showing how the model allows the application to collect and relate data from a number of sources, stakeholders can better understand the value of the application and provide input into the interfaces and other end-user-facing elements required to make the application useful.
A well-defined, stakeholder-approved model can then act as a map for the rest of the application. Whether you're building as a solo developer or as part of a team, the data model's representation of the way information is stored and flows through different parts of the application is a critical aspect to understand.
On development teams, the model provides a central and accessible view of the most important part of an application: your business data. When all developers are able to make design decisions based on a shared understanding of the data, application development will take less time and be more responsive to changing requirements.
Finally, your model helps ensure that you can answer necessary questions using queries against your data and then quickly build reports using the answers. Appian has many features that make queries easy to build and update, and those features work best with a foundation of data that is crafted to show relationships in previously siloed information.
A data model is a representation of all of the information available for your application. The model includes:
A data model should be examined from two perspectives: a conceptual angle and a logical angle. Each provides a different level of detail important to the design and how the model informs the application.
The conceptual angle is a high-level view of your data model. In it, you draw the basic connections between the data available in your app. Using a tool of your choice, you can quickly assemble a sketch of your data model. For example, a retail application might have a conceptual model like this:
The concept can serve as reference for business stakeholders. It will allow them to confirm that the model is organizing and connecting data correctly.
Once you have constructed a concept, you can enhance the level of detail with a logical angle of the data model. This more comprehensive explanation of the model shows the specific fields available on each record type, the common fields for establishing relationships between them, and any filtering or security that needs to be applied to keep the data secure.
In your sketch, you could add Customer fields, including the common fields relating Customers to their Orders and State, as well as the user types that should be able to access Customer data in the application (in this case, salespeople, customer service reps, and managers).
Once you've built your logical model, create your record types based on your data model. This lets you realize both the conceptual and logical levels and then enhance it with other sync-enabled features.
On the Data Model page of the record type, you can see and interact with the model.
The relationship diagram shows all of the logical connections you've established between record types, and the suggested relationships can help you find even more ways to intelligently link your data. The Data Structure table gives logical details, including the data types of each field and the common fields used to relate your data.
As you start to build your data model in Appian, consider the following best practices.
Each record type represents a business concept in your application, so it should be scoped so you can create, change, and delete record data without needing to duplicate those changes in related record types.
As you examine your source data, notice where relatively stable data may be shared between two or more record types, and consider using a reference record type to hold this data. A reference record type is a record type that contains reference data. In a database, this is often called a lookup table.
For example, if you have Customer and Warehouse record types, basic location data like state or province, postal code, and country can be stored in a reference record type since it's unlikely to change.
Here are some ways reference record types make application development easier:
For many applications, creating your record type with data sync enabled offers the best performance and allows you to use the full suite of features available for records. Still, there are some instances where a record type does not need to have data sync enabled to make a part of your app meet user needs.
Imagine you are building a fleet management app. Two of the user personas for this app are fleet supervisors and service managers, and each has different ways of interacting with the fleet data.
User Persona | Requirements |
---|---|
Fleet supervisor | A dashboard with an overview of all vehicles, including the vehicles in service, those needing repairs, and any currently in the repair shop. |
Up-to-date data about vehicle statuses since they can change throughout the day. | |
Service manager | A report displaying quarterly updates about their department, including the number and types of repairs performed on the vehicles in the fleet. |
Data is static after each repair is complete and is not accessed on a daily basis. |
Record types powering this application might include Vehicles, Repair Requests, and Employees (representing the drivers and mechanics interacting with the vehicles). Each of these record types has data sync enabled so they can relate to the others using record type relationships. Data sync will also keep the data fresh by syncing any vehicle updates that occur during the workday. The fleet supervisor's dynamic dashboard would be easiest to build using record types with data sync enabled.
Because repair data is created every time a vehicle is in the shop, this expansive data source contains more than 3 million rows. Since the service manager will infrequently query the historical data and the source exceeds the row limit, you could build a Completed Repairs record type that does not have data sync enabled for this data. The interface can still query the data source so users can search for information.
You may also choose to not enable data sync due to data sovereignty restrictions, including privacy concerns for health, financial, or other protected data. Record types without data sync enabled can still take advantage of Appian's flexible platform to bring together data in powerful applications regardless of where that data lives.
You can use any database, Salesforce, or web service as the source of your record type. When you enable data sync on a record type, you sync up to 2,000,000 rows of data. While Appian allows you to sync significant amounts of data per record type, very large datasets may require you to adapt your model to work within Appian's current constraints. To ensure you have flexible access to the data needed for your application, consider using source filters to divide up large datasets into multiple record types, each with a specific purpose.
Imagine your data source is a database table with seven million rows of client appointment data. You could create multiple record types from this source, some with data sync enabled and some without, to use different aspects of the data:
Creating multiple record types from the same data increases the complexity of your model; this may result in a higher maintenance burden over the life of the application. The flexibility of record types lets you decide what combination of data will work best for your application so you can meet the needs of your stakeholders.
Enterprise data often includes information that must be protected for business, privacy, or regulatory reasons. For example, you may want to restrict customer information to the salesperson working with a client, or you may need to allow only managers and executives to view company financial data. As you construct your data model, identify the information that requires protection and the users or groups that are allowed to access it. When you build the record type that includes sensitive data, you can then configure security controls to ensure protected record data can only be viewed by certain users or groups.
To learn more about the security features available for record types with data sync enabled, see Record-Level Security.
To help you follow Appian's recommended process for designing your data model, use the following checklist to ensure you've met the baseline requirements.
Now that you've reviewed the best practices and recommendations, let's look at a sample data model that leverages a large dataset, multiple record types, and numerous sync-enabled features.
We've been tasked with combining information from multiple sources to construct a retail store management app. This app will be used by employees in a few different roles (sales, customer service, and managers), and each role has its own functional and reporting requirements for the app. Let's examine these roles and look at what the data model needs to include for each.
The sales team needs to track each sale made by individual team members (represented as Employees). They also want to see which products are most popular and who the most active customers are in a given time period. A salesperson needs the following information:
The customer service team must track each support request through their established workflow and they want to discover what products are returned or exchanged and at what rate. The data needs of a user in this role are similar to the sales role, but instead of employee data, they need to access the support cases for orders.
The store's management team wants to know which salesperson has the most sales in a given time period and how many requests each customer service representative resolves each week. The management team is not responsible for product inventory or customer relationships, so their data needs are simpler than the other roles.
The retail application could be built using five record types with sync enabled to cover the major business concepts. Data sync is needed for these record types to establish relationships between them. These relationships are then used to quickly build the interfaces and reports for each persona.
In addition, some data is stored in separate reference record types. This allows data like the list of employee roles or support case resolutions to change as needed. The reference record types in our model are indicated with an italicized label.
salesperson
and support agent
).refunded
and exchanged
).To begin implementing your own data model, start by creating a record type. Once you create the design object, learn how to configure the new record type by:
For a guided experience creating and configuring a record type, see the Appian Records Tutorial.
Data Modeling with Appian Records