Process Mining is deprecated with Appian 24.2 and will no longer be available in an upcoming release. Instead, we encourage customers to use Process HQ to explore and analyze business processes and data. |
Process mining is helpful in many scenarios, whether you want to visualize your process for the first time, uncover more detailed insights into compliance or efficiency, and much more. As long as your processes have data to back them up, there will be something new to learn and efficiencies to find.
This page shares some common use cases that process mining can address.
I want to… | How Appian can help |
---|---|
Transform existing process data into a format that Process Mining can analyze. | Use Mining Prep to transform data into event logs and upload them into Process Mining to start your analysis. |
Visualize a process to gain new insights into how a process actually executes. | Upload an event log and Process Mining automatically generates a discovered model. Here you can adjust a variety of visual settings and filters to hone your analysis. |
Generate workflow based on a discovered process. | Use the generate workflow capability to generate an application and process model in the Appian Designer based on a process you discover in Process Mining. |
Track performance or savings metrics for your processes and share summaries of the results. | Use process scorecards to report on performance or savings trends for your mined processes. Performance scorecards score your processes based on custom performance objectives that you configure. Savings scorecards calculate cost savings that result from implementing a new process. |
Visualize, monitor, and share process metrics as charts and graphs. | Create dashboards to display process metrics as key performance indicators (KPIs), histograms, bar charts, and more. |
Check how a process conforms against a target model. | Add a target model and Process Mining finds the differences between the discovered and target models. View precise conformance statistics on the Statistics page. |
Identify issues in a process that negatively impact its performance. | Use root cause analysis from the Insights page to uncover deviations such as skipped events, events with switched orders, and more. |
Your car manufacturing plant wants to identify optimization opportunities.
Due to the complexity of the process and the sheer volume of production, it is challenging to identify process bottlenecks and inefficient deviations. Fortunately, your order tracking system records data about each order as it passes through the assembly line from order creation to delivery completed. This data is your data set, which is full of opportunities to uncover, but you must first transform it into an event log so it is suitable for Process Mining analysis.
Mining Prep is a powerful, low-code tool that you can use as a transformation developer to transform your data set into an event log. In other words, you need to make sure that you identify all the required elements within the data set such as the case ID, time stamps, and other attributes. For example, your plant uses each vehicle's VIN to track it through your manufacturing process. In this case, the VIN can serve as the case ID. The case ID maps events, such as Order Created, Chassis Completed, and Body Painted to a single case or single occurrence of a process. Once you're ready, you can transform the data set into an event log and load it into Process Mining.
Now that your event log is in Process Mining, as a business analyst you can view a visualization of your process in the form of a discovered model. By default, the discovered model will show you the most common variants or paths your process takes, including how many cases went through each activity, how long each activity took, and the wait time between activities.
Note: You need to identify two time stamps for each activity to see activity durations.
Within the discovered model, you notice there is a longer than expected wait time before your Quality Control event, which is causing a bottleneck in your process. The following screenshot shows how connectors between activities are red when there are high average activity durations.
Using the metrics on your dashboard and statistics pages, you identify that the case duration is trending upwards over time, but quality control personnel are working at maximum capacity.
To further confirm your assumptions, you run a root cause analysis on the high case durations and find that they are highly correlated with event attributes that relate to quality control workers.
Now you know what is probably the source of your process bottlenecks, and you determine that you need to hire more resources to alleviate the bottleneck and reduce cycle times.
After you've implemented changes to your process, you can repeat this procedure again and again to verify the results of your optimization and continue uncovering more opportunities for improvement. To convey the results of your process improvements, you can create a process scorecard and share it with the business executive so they can track the performance of this process over time.
Your Procurement department wants to reduce maverick buying and increase compliance for a procure-to-pay (P2P) process.
As an auditor within the Procurement department, you already have a target or ideal process in a BPMN format. After you upload the associated event log into Process Mining, you can import the BPMN target model. This provides a reference point for Process Mining to compare your actual and target process.
Once you've uploaded the event log and target model, Process Mining automatically visualizes your actual process as a discovered model and your target model as a BPMN model. A good first step is to look at the target model which overlays deviations in your process.
Here, the target model indicates that the Purchase Order: Approved activity is skipped in several cases. You know that the activity is skipped because the red dotted line shows an alternate path, and the Activity Skipped icon displays on the activity. This is a deviation in the process that you want to resolve, but you still aren't sure how to start fixing this issue. This is where automated root cause analysis can help. Root cause analysis uses machine learning to uncover why a deviation occurred.
The Deviations page displays all process deviations between the actual and target process, such as the skipped Purchase Order: Approved activity that leads to maverick buying. After you perform root cause analysis, Process Mining identifies a pattern that the majority of these cases came from a specific department. This indicates to you that this department needs more communication about the correct process, and they need an easier way to align with that process.
Thankfully, your Appian developer can now leverage the full suite of Appian functionality to streamline and enhance this P2P process with business rules, process models, or other automation capabilities to remove the deviations. As you continuously analyze your process data in Process Mining, you can see at a glance how your changes are improving the process or where more opportunities still exist. As you discover more about your process, you can create personalized dashboards that track key metrics about your process, which further help you pinpoint areas for optimization.
Process Mining Use Cases